相关设备

火狐官网一家专注于矿石磨粉域的企业

新能源东风已至碳化硅御风而起

来源:火狐官网    发布时间:2023-11-03 20:09:28

器件的理想材料之一,是由硅元素和碳元素组合而成的一种化合物半导 体材料。 同半导体材料...

  器件的理想材料之一,是由硅元素和碳元素组合而成的一种化合物半导 体材料。

  同半导体材料硅(Si)相比,其禁带宽度是硅(Si)的 3 倍,击穿电压是其 8-10 倍,导热率是其 3-5 倍,电子饱和漂移速率是其 2-3 倍。 SiC 在耐高压、耐高频、耐高温方面具有独特优势。耐高压方面,SiC 阻抗更低,禁带宽度更宽, 能承受更大的电流和电压,带来更小尺寸的产品设计和更好效率;耐高频方面,SiC 不存在电流 拖尾现象,可提升元件的开关速度,是硅(Si)开关速度的 3-10 倍,从而适用于更高频率和更 快的开关速度;耐高温方面,SiC 拥有非常高的导热率,相较硅(Si)来讲,能在更高的温度下 工作。因此,SiC 能够有效满足电力电子系统的高效率、小型化和轻量化要求,有望成为未来最 被普遍的使用的半导体芯片基础材料。SiC大多数都用在功率或射频器件,适用于600V以上的高压场景,包括光伏、新能源汽车、充电桩、 风电、轨道交通等等电力电子领域。其中,新能源汽车领域,功率半导体主要使用在于电机控制器、DC/DC变换器、车载充电机、压缩机、水泵、油泵,同时还应用于配套充电桩。

  SiC 产业链最重要的包含上游衬底、中游外延、下游器件制造和模块封装,产业链价值量倒挂,其中 衬造技术壁垒最高、价值量最大,是未来 SiC 大规模产业化推进的核心。 衬底:最为核心的环节,价值量最高,约为 46%。根据电阻率的不同,可分为导电型和半绝 缘型衬底,分别用于功率和射频器件领域。高纯硅粉和高纯碳粉采用物理气相传输法(PVT) 生长 SiC 晶锭,之后经过滚磨、切割、研磨、抛光、清洗等环节最终形成衬底,其中晶体的 生长为核心工艺,核心难点在于提升良品率。晶片尺寸越大,对应晶体的生长与加工技术难 度越大,长晶技术壁垒高,毛利率可达 50%左右。外延:价值量占比约23%,是指在衬底上面再覆盖一层薄膜以满足器件生产条件。其中导电 型 SiC 衬底用于 SiC 外延,生产功率器件,应用于电动汽车和新能源领域;半绝缘型 SiC 衬 底用于氮化镓外延,生产射频器件,应用于5G通信等领域。 器件制造及模块封装:价值量占比约 20%,产品有 SiC二极管、SiCMOSFET、全 SiC 模 块、SiC 混合模块。应用:依据电阻率区分,导电型 SiC 器件大多数都用在电动汽车、光伏、轨道交通、充电桩等领 域;半绝缘 SiC 器件大多数都用在 5G 通信、数据传输、航空航天、国防军工等领域。 半绝缘型 SiC 衬底市场增长迅速,6 英寸晶片成为发展的新趋势。受益于 5G 基建加快布局和全球地 缘政治动荡,半绝缘型 SiC 衬底市场增长空间巨大。根据 Yole 数据,2020 年全球半绝缘型 SiC 衬底市场规模为 1.8 亿美元,较 2019 年同比增长 18%。此外,根据中国宽禁带功率半导体及应 用产业联盟数据,2020 年全球 4 英寸半绝缘型 SiC 晶片的市场需求约 4 万片,6 英寸约 5 万片, 两者需求占比不相上下;预计到 2025 年,4 英寸市场需求将减少至 2 万片,6 英寸成为发展趋势。

  导电型 SiC 衬底市场发展前途良好,6 英寸衬底占据绝大部分市场占有率。受下游民用领域的持续 景气,如新能源汽车与光伏,导电型 SiC 衬底市场规模不断扩容。根据 Yole 数据,2018 年,全 球导电型 SiC 衬底市场规模为 1.7 亿美元,2020 年增长至 2.8 亿美元,复合增长率为 26%。根据 中国宽禁带功率半导体及应用产业联盟数据,全球 6 英寸导电型衬底需求从 2020 年的超 8 万片增 长至 2025 年的 20 万片,而 4 英寸产品将逐步退出市场。 SiC 主流大厂正陆续推出 8 英寸晶圆片。当前,全球市场上 6 英寸 SiC 衬底已实现商业化,主流 大厂也陆续开始推出 8 英寸样品。SiC 晶圆尺寸的扩大不但可以降低生产成本,而且有利于保持 晶圆几何形状,减少边缘翘曲,提升晶圆生产的良率。2019 年 Cree 完成了首批 8 英寸 SiC 晶圆 样品的制样,意法半导体在 2021 年 7 月宣布了制造出首批 8 英寸 SiC 晶圆片。预计 2023 年开 始,各大厂商将逐渐量产 8 英寸衬底,并继续提高外延和器件方面产能及良品率。随着 6 英寸衬 底、外延晶片质量提高,8 英寸产线实现规模化生产,SiC 器件和模块逐渐普及为电动汽车主流配 置,规模效应增大,成本可得到一定效果降低。

  目前,SiC 衬底成本高/制作难、长晶速度慢、损失率高导致了器件的高成本,影响了 SiC 器件的 渗透率。根据我们国家第三代半导体产业技术创新战略联盟(CASA)多个方面数据显示,SiC 功率器件最主要 的原材料成本——SiC 衬底、外延片的价格近年来持续下降,原因有:第一,伴随大直径衬底占比逐步的提升,衬底单位面积生长成本下降;第二,单晶的平均可用厚度仍会持续增加,这将不断 降低单位面积衬底成本;第三,衬底质量和晶片供货量的提高,以及外延晶片成品率的提高,推 动 SiC 器件成本逐步降低。未来 SiC 各环节成本有望持续下降,并迎来对于下游产业的加速渗透。

  Wolfspeed 垄断 SiC 器件与外延片市场,欧美企业主导 SiC 器件市场。从衬底到器件环节,目前 以 Wolfspeed、ST 及罗姆等海外头部企业占据产业链主要份额。其中,因布局较早,良率与产能 规模全球领先,在 SiC 衬底及外延片市场 Wolfspeed 一家独大。下游器件领域,欧美日企业领先, 整体市占率达到 95%,意法半导体作为特斯拉SiC 功率器件的第一梯队供应商,市场占有率排名 第一,达到 41%。

  国际主流厂商大幅扩产,释放抢占 SiC 市场信号。国际企业大力完善第三代半导体产业布局,计 划大幅扩产来强化竞争优势,以抢夺日渐增长的市场占有率。安森美表示 22 年要将 SiC 产能扩充 4 倍;意法半导体计划到 2024 年将 SiC 晶圆产能提高到 2017 年的 10 倍,SiC 营收将达到 10 亿美 元。在国际大厂加速扩产的背景下,SiC 产业格局逐渐迎来空前重构和变化。 国内厂商加速布局,发展空间巨大。国内企业也在积极研发和探索 SiC 器件的产业化,已形成 相对完整的 SiC 产业链体系,部分产业节点已有所突破。SiC 衬底方面,天岳先进在半绝缘 SiC 衬底的市场占有率连续三年保持全球前三;

  天科合达在国内率先成功研制 6 英寸 SiC 衬底,并已 实现 2-6 英寸 SiC 晶片的规模化生产和器件销售。SiC 外延片方面,厦门瀚天天成与东莞天域可 生产 2-6 英寸 SiC 外延片。SiC 器件方面,国内厂商主要有泰科天润、瀚薪、扬杰科技、中电 55 所、中电 13 所、科能芯、中车时代电气等。模组领域,目前 SiC 市场斯达半导、河南森源、常州 武进科华、中车时代电气处于起步阶段。中国厂商在围绕 SiC 衬底生产上正在缩短与国外差距, 未来若能在 6 英寸和 8 英寸的 SiC 晶圆良率和成本上进一步实现突破是竞争的关键。

  全球 SiC 器件市场发展迅猛,2025 年有望增长至 26 亿美元。受益于 5G 通信、国防军工、新能 源汽车和新能源光伏等领域的发展,SiC 器件市场规模增速可观。Yole 多个方面数据显示,2019 年全球 SiC 功率器件市场规模为 5.4 亿美元,预计 2025 年将增长至 25.6 亿美元,CAGR 约 30%。整体 电动车相关领域(主逆变器+OBC+DC/DC转换器)SiC 市场规模有望在 25 年达到 15.5 亿美元, 19-25 年 CAGR 为 38%;而电动车充电基础设施领域 SiC 增长最快,19-25 年 CAGR 为 90%。

  全球新能源汽车终端需求火热,车用 SiC 晶圆需求攀升。根据 EVTank 多个方面数据显示,全球新能源汽 车 2025 年销量将达到 1800 万辆,19-25 年 CAGR 为 42%。随着新能源车渗透率不断升高,以及 整车架构朝 800V 高压方向迈进,SiC 器件在车载逆变器等领域有望迎来规模化发展。据 TrendForce 多个方面数据显示,预估 2025 年全世界电动车市场对 6 英寸 SiC 晶圆需求可达 169 万片,21- 25 年 CAGR 为 94%。

  国内新能源车市场规模迅速增加,SiC 功率器件有望进一步突破。IDC预计,2022 年中国新能源车 市场规模将达到 523 万辆,同比增长 47.2%。2025 年新能源车市场规模有望达到约 1,299 万辆, 2021-2025 年复合增长率约为 38%。根据 DIGITIMES Research 预测,2025 年电动汽车用 SiC 功率半导体将占整车用功率半导体的 37%以上,高于 2021 年的 25%。国内新能源车市场具备一马当先的优势,随着渗透率的逐步提升和汽车电子化程度的持续推进,国内车用 SiC 器件规模有望 快速突破。 多维度优势赋能车用 SiC 器件。SiC 功率器件在新能源汽车中展现出独特优势,其应用场景包括:电机驱动系统逆变器、电源转换系统(车载 DC/DC)、车载充电系统(OBC)及非车载充电桩 等。从材料来看,SiC 相对于硅材料拥有更高的击穿场强、更高的热导率以及更高的电子饱和漂 移速度;从电路损耗来看,在同等条件下,SiC 功率器件能大幅减小电路开关的能量损耗(下降 85%);从设备空间来看,采用 SiC 功率器件的 DC/DC 转换器、车载充电机以及电机控制器分别 能加减小设备 20%、40%、64%的系统空间;从电池转化效率来看,集成了 SiC 器件的模块能帮 助系统提升 6%的电力转换效率。 众多新能源汽车厂商竞相布局 SiC 器件。2018 年,特斯拉的 Model 3 首次采用意法半导体和英飞 凌的 SiC 逆变器取代了 Si-IGBT,逆变器效率提升了 5-8%。2020 年,比亚迪将自主研发制造的 SiC MOSFET 功率器件搭载在汉 EV 四驱高性能版上,实现了 200KW 的输出功率,功率密度提 升一倍。预计到 2023 年,比亚迪将实现 SiC 基车用功率半导体对硅基 IGBT 的全面替代,将整车 性能在现有基础上再提升 10%。目前,已有多家厂商推出了面向 HEV/EV 等电动汽车充电器的SiC 功率器件。未来随着 SiC 器件在车载充电器、DC/DC 转换以及充电桩中渗透率提升,市场空 间有望快速扩大。 新能源车高电压平台大势所趋,SiC 器件彰显优势。近年来各车企纷纷通过提升功率来缓解新能 源汽车的续驶焦虑和充电焦虑,而功率的增加一般有两种路径,即提高电流或电压。然而,大电 流有几率会使较大的核心部件热损耗,因此高电压电气平台成为了首选。高电压平台要求电驱动 系统的耐压性也要随之提升,而硅基器件无法承载电压的大幅升高,故 SiC 应用将逐步替代硅基 IGBT 成为关键。相比之 IGBT,SiC 体积小、功率密度高、耐高压和高温能力强,可助力新能源 车实现更长的续航能力、更短的充电时间和更强的动力性能。

  国内外车企纷纷布局 800V 高压平台,SiC 大规模车载应用可期。在相同功率下,800V 电压平台 较 400V 电压的电流减半,电池充电热量降低,且低成本、轻量化、EMC干扰的降低,以及效率 和续航的提升,让充电补能体验大幅增强。2019 年保时捷 Taycan推出全球首款 800V 高电压电 气架构,支持 350kw 大功率快充,15 分钟内电量可充到 80%。近年来比亚迪、奥迪、吉利、小 鹏等一众车企也纷纷开始布局800V高电压平台,预计各大车企基于800V高压平台方案将在2022 年之后陆续上市,SiC 作为 800V 平台架构的最佳拍档有望大放异彩。 800V 高压平台需要电源产品配套升级,充电桩等迎来发展良机。当动力电池电压平台升级到 800V,当前的 OBC、DC/DC 及充电桩等电源产品都需要从 400V 等级提升至符合 800V 电压平台 的应用,SiC 器件由于其优异的特性也将开始大规模的应用。以充电桩为例,800V 高压充电桩在 设计架构上区别于 400V 的重要特点是需要配置 SiC MOSFET,以达到更快的充电速度和更好的 器件耐压性。22 年 Wolfspeed 宣布参与搭载 SiC 技术的直流快速充电桩项目,总功率可达 350 kW,成本可降低 20-30%。国内车企也开始发力,广汽埃安于 2021 年 8 月发布 480kW 超级充电 桩,小鹏也宣布 22Q4 起部署 480kW 高压超充桩,实现充电 5 分钟续航 200 公里。

  全球和国内光伏新增装机量迅速增加,成长天花板被打开。根据 CPIA 预测,乐观情况下,全球 光伏年新增装机在 2022 年将首次突破 200GW,达到 225GW 的水平,到 25 年全球年新增装机将 达到 330GW,20-25 年光伏新增装机的复合增长率达 20%;2025 年我国新增装机规模将达到 110GW,相当于 2020 年底的 3.7 倍。 光伏逆变器出货量快速地增长,IGBT 作为逆变器“心脏”作用凸显。光伏逆变器是光伏系统的核 心部件,可以将太阳能板产生的可变直流电转换为交流电,并反馈回输电系统或供离网的电网使 用。根据 IHS Markit,近年来光伏产业的加快速度进行发展带动光伏逆变器市场规模快速提升,2020 年全 球光伏逆变器的市场规模为 136GW,2025 年将有望达到 401GW,20-25 年 CAGR 为 24%。光 伏逆变器成本结构方面,半导体器件和集成电路材料主要为 IGBT元器件IC半导体,其中以 IGBT 为主的半导体器件在驱动保护、过电流/短路保护、过温保护、机械故障保护等方面发挥巨 大作用,是逆变器的“心脏”,约占逆变器成本的 12%左右。

  SiC 器件可有效提升光伏逆变器性能,有望逐步替代硅基 IGBT 成为逆变器核心。相比于硅基 IGBT,SiC MOS 具有更低的导通损耗、更低的开关损耗、无电流拖尾现象、高开关速度等优点, 并能在高温等恶劣的环境中工作,有利于提高光伏逆变器常规使用的寿命。根据 SiC 芯观察数据, 采用 SiC 器件可有效提升光伏发电转换效率,光伏逆变器的转换效率可从硅基的 96%提升至 SiCMOSFET 的 99%以上,能量损耗降低 50%以上,设备循环寿命提升 50 倍。未来应用于光伏领域 的SiC逐渐成熟,伴随渗透率的逐步提升,其有望逐渐替代硅基IGBT在光伏逆变器上的应用。 国内光伏逆变器厂商加快布局,为 SiC 国产化提供历史性机遇。随着中国光伏装机量的增长,中 国本土厂商加快技术与产品升级,在全球已占了重要位置。在出货量排名前十的供应商中有六家 是中国供应商,其中华为以 23%的市占率位居榜首,国内逆变器厂商在全球逆变器市场中占据超 六成市场占有率。未来随着新能源替代传统燃料进程加速,逆变器向高效率、高功率密度、高可靠 性等方向发展,SiC 器件有望受益于本土供应链优势,迎来发展良机。根据 SiC 芯观察多个方面数据显示, 2020 年 SiC 光伏逆变器占比为 10%,预计 2035 年占比将达到 75%,未来空间十分广阔。

  在大容量、轻量化和节能化要求下,轨道交通领域采用 SiC 大势所趋。随着轨道交通硅基功率器 件性能逐渐逼近理论极限,SiC 功率器件成为重点发展趋势,以满足轨道交通系统对高功率密度、 低损耗和高可靠性等要求。与传统硅基 IGBT 牵引逆变器相比,全 SiC 牵引逆变器能耗能够降低 10%以上。2014 年日本小田急电铁新型通勤车辆配备了三菱电机 3300V/1500A 全 SiC功率模块逆变器,开关损耗降低 55%,体积和重量减少 65%,电能损耗降低 20%~36%。根据 CASA 预 测,未来 30 年内,轨道交通应用中 90%的硅 IGBT 将被 SiC 器件或混合器件替代。Yole 数据显 示,铁路 SiC 市场将从 2019 年的 900 万美元增长到 2025 年的 1.18 亿美元,CAGR 达到 55%。 国内外厂商纷纷布局轨交系统 SiC 器件。2015 年,日本三菱公司推出了高性能平面栅 3.3kV SiC MOSFET 器件及全 SiC 模块产品,并在整个世界首次将全 SiC 模块应用到轨道交通牵引变流系统 中。近年来随着新能源产业的蓬勃发展,SiC 加快渗透进入轨交领域。日本 N700S 新干线、西门 子 Velaro 列车等也大面积采用了 SiC 牵引系统,截至 2021 年 6 月,国内也已经有苏州三号线条地铁线路采用了SiC技术。目前中国的时代电气、天岳先进,日本的东芝、 三菱、日立,以及欧美的 Wolfspeed、英飞凌,都已在发力轨道交通 SiC 产业链。我国高铁建设 目前已拥有世界领先水平,中国巨大的应用需求是国产 SiC 的“沃土”,国内厂商有望借助庞大 市场确立先发优势。

  (SiC),俗称金刚砂。SiC 在自然界中以矿物碳硅石的形式存在,但十分稀少。不过,自1893 年以来,粉状

  的颜色,纯净者无色透明,含杂质(碳、硅等)时呈蓝、天蓝、深蓝,浅绿等色,少数呈黄、黑等色。加温

  700℃时不褪色。金刚光泽。比重,具极高的折射率, 和高的双折射,在紫外光下发黄、橙黄色光,无

  (SiC)半导体材料是自第一代元素半导体材料(Si、Ge)和第二代化合物半导体材料(GaAs

  上面没有做任何掩膜,就为了去除SiC表面损伤层达到表面改性的效果。但是实际刻蚀过程中总是会在

  半导体器件,其高频、高效、高温的特性很适合对效率或温度要求严苛的应用。可大范围的应用于太阳能逆变器、车载电源、

  汽车电机控制器、UPS、充电桩、功率电源等领域。原作者:大年君爱好电子

  MOSFET芯片的半桥功率模块系列新产品型号BMF600R12MCC4BMF400R12MCC4汽车级全

  MOSFET对于驱动的要求也不同于传统硅器件,大多数表现在GS开通电压、GS关断电压、短路保护、信号延迟和抗干扰几个方面,具体如下

  具备耐高压、耐高温、高频、抗辐射等优良电气特性,突破硅基半导体材料物理限制,是第三代半导体核心材料。

  231.【P199】第199讲 NX85建模细节特征之样式圆角命令详解二曲线+轮廓

  144.【P214】第214讲 NX85同步建模技术详解四拉出面命令 #硬声创作季

请留下您的信息,我们马上跟您联系!

咨询电话:13917147829